GitRelate(d)
Related Repositories for jiwidi/time-series-forecasting-with-python
Repository
⭐ Stars
🍴 Forks
Ratio
jiwidi/time-series-forecasting-with-python
652
50
13.04
TheAlgorithms/Python
164
27
6.07
Alro10/deep-learning-time-series
160
12
13.33
vinta/awesome-python
144
25
5.76
huggingface/transformers
135
15
9.00
unit8co/darts
120
9
13.33
timeseriesAI/tsai
116
5
23.20
donnemartin/system-design-primer
112
14
8.00
jwasham/coding-interview-university
112
15
7.47
jakevdp/PythonDataScienceHandbook
105
24
4.38
eugeneyan/applied-ml
102
12
8.50
josephmisiti/awesome-machine-learning
99
20
4.95
pytorch/pytorch
98
16
6.12
streamlit/streamlit
98
4
24.50
microsoft/ML-For-Beginners
97
11
8.82
sindresorhus/awesome
96
8
12.00
jdb78/pytorch-forecasting
96
6
16.00
ageron/handson-ml2
94
21
4.48
tensorflow/tensorflow
94
18
5.22
facebookresearch/Kats
93
1
93.00
scikit-learn/scikit-learn
92
19
4.84
facebook/prophet
91
10
9.10
slundberg/shap
91
5
18.20
public-apis/public-apis
89
9
9.89
microsoft/forecasting
86
4
21.50
AIStream-Peelout/flow-forecast
86
2
43.00
labmlai/annotated_deep_learning_paper_implementations
86
4
21.50
tensorflow/models
85
19
4.47
blue-yonder/tsfresh
84
6
14.00
tiangolo/fastapi
83
2
41.50
gradio-app/gradio
83
1
83.00
yunjey/pytorch-tutorial
81
13
6.23
EbookFoundation/free-programming-books
80
13
6.15
google-research/google-research
80
10
8.00
pycaret/pycaret
79
10
7.90
CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
79
11
7.18
alan-turing-institute/sktime
79
6
13.17
ml-tooling/best-of-ml-python
78
3
26.00
ageron/handson-ml
78
17
4.59
eriklindernoren/ML-From-Scratch
78
8
9.75
cuge1995/awesome-time-series
76
6
12.67
ray-project/ray
75
3
25.00
MaxBenChrist/awesome_time_series_in_python
75
7
10.71
donnemartin/data-science-ipython-notebooks
74
18
4.11
wilsonfreitas/awesome-quant
73
6
12.17
fastai/fastbook
73
11
6.64
d2l-ai/d2l-en
71
9
7.89
Avik-Jain/100-Days-Of-ML-Code
71
11
6.45
google-research/tuning_playbook
71
6
11.83
kamranahmedse/developer-roadmap
70
9
7.78
ourownstory/neural_prophet
70
5
14.00
karpathy/nanoGPT
70
6
11.67
curiousily/Getting-Things-Done-with-Pytorch
70
7
10.00
openai/whisper
70
4
17.50
AUTOMATIC1111/stable-diffusion-webui
70
5
14.00
microsoft/qlib
70
7
10.00
aymericdamien/TensorFlow-Examples
69
13
5.31
nomic-ai/gpt4all
69
6
11.50
yzhao062/anomaly-detection-resources
69
12
5.75
fchollet/deep-learning-with-python-notebooks
69
11
6.27
f/awesome-chatgpt-prompts
69
2
34.50
AileenNielsen/TimeSeriesAnalysisWithPython
69
7
9.86
3b1b/manim
69
3
23.00
EthicalML/awesome-production-machine-learning
69
7
9.86
openai/openai-cookbook
68
7
9.71
facebookresearch/segment-anything
68
2
34.00
microsoft/generative-ai-for-beginners
68
4
17.00
Developer-Y/cs-video-courses
68
6
11.33
awesomedata/awesome-public-datasets
68
7
9.71
pytorch/examples
67
5
13.40
thuml/Time-Series-Library
67
10
6.70
labuladong/fucking-algorithm
67
10
6.70
keras-team/keras
67
8
8.38
mlflow/mlflow
67
4
16.75
twitter/the-algorithm
66
3
22.00
awslabs/gluon-ts
66
6
11.00
microsoft/DeepSpeed
66
2
33.00
hpcaitech/ColossalAI
66
1
66.00
alexeygrigorev/data-science-interviews
65
3
21.67
dair-ai/Prompt-Engineering-Guide
65
6
10.83
yzhao062/pyod
65
9
7.22
DataTalksClub/data-engineering-zoomcamp
64
6
10.67
google/jax
64
3
21.33
facebookresearch/detectron2
64
3
21.33
Nixtla/statsforecast
64
6
10.67
jlevy/the-art-of-command-line
64
2
32.00
AMAI-GmbH/AI-Expert-Roadmap
64
6
10.67
mlabonne/llm-course
63
4
15.75
academic/awesome-datascience
62
6
10.33
stefan-jansen/machine-learning-for-trading
62
6
10.33
yangshun/tech-interview-handbook
62
3
20.67
microsoft/Data-Science-For-Beginners
62
4
15.50
statsmodels/statsmodels
62
7
8.86
facebookresearch/faiss
62
2
31.00
PaddlePaddle/PaddleOCR
62
6
10.33
jackfrued/Python-100-Days
62
14
4.43
rougier/scientific-visualization-book
61
1
61.00
hwchase17/langchain
61
5
12.20
Azure/DeepLearningForTimeSeriesForecasting
61
2
30.50
firmai/financial-machine-learning
61
3
20.33
Show More