GitRelate(d)
Related Repositories for Azure/DeepLearningForTimeSeriesForecasting
Repository
⭐ Stars
🍴 Forks
Ratio
Azure/DeepLearningForTimeSeriesForecasting
656
57
11.51
microsoft/forecasting
185
15
12.33
Alro10/deep-learning-time-series
184
13
14.15
TheAlgorithms/Python
165
23
7.17
huggingface/transformers
163
25
6.52
tensorflow/tensorflow
151
41
3.68
google-research/google-research
146
19
7.68
tensorflow/models
139
35
3.97
pytorch/pytorch
118
28
4.21
jdb78/pytorch-forecasting
117
15
7.80
alan-turing-institute/sktime
115
15
7.67
vinta/awesome-python
114
10
11.40
awslabs/gluon-ts
113
14
8.07
josephmisiti/awesome-machine-learning
111
23
4.83
slundberg/shap
110
9
12.22
jakevdp/PythonDataScienceHandbook
109
22
4.95
blue-yonder/tsfresh
109
12
9.08
facebook/prophet
109
11
9.91
donnemartin/system-design-primer
107
9
11.89
scikit-learn/scikit-learn
106
26
4.08
yunjey/pytorch-tutorial
105
17
6.18
aymericdamien/TensorFlow-Examples
105
21
5.00
fastai/fastai
104
18
5.78
scutan90/DeepLearning-500-questions
101
13
7.77
google-research/bert
101
12
8.42
ageron/handson-ml
98
27
3.63
fchollet/deep-learning-with-python-notebooks
97
18
5.39
eugeneyan/applied-ml
97
10
9.70
streamlit/streamlit
97
9
10.78
ray-project/ray
95
10
9.50
dmlc/xgboost
94
20
4.70
timeseriesAI/tsai
93
10
9.30
ageron/handson-ml2
93
14
6.64
jwasham/coding-interview-university
93
15
6.20
rasbt/deeplearning-models
92
15
6.13
labuladong/fucking-algorithm
92
13
7.08
unit8co/darts
91
7
13.00
dennybritz/reinforcement-learning
91
18
5.06
AIStream-Peelout/flow-forecast
90
5
18.00
zhouhaoyi/Informer2020
89
11
8.09
huseinzol05/Stock-Prediction-Models
89
15
5.93
microsoft/DeepSpeed
87
6
14.50
yzhao062/anomaly-detection-resources
86
12
7.17
keras-team/keras
86
20
4.30
CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
85
17
5.00
facebookresearch/fastText
84
13
6.46
ourownstory/neural_prophet
84
8
10.50
sindresorhus/awesome
83
11
7.55
sebastianruder/NLP-progress
81
2
40.50
ctgk/PRML
81
12
6.75
donnemartin/data-science-ipython-notebooks
81
21
3.86
microsoft/recommenders
80
13
6.15
pytorch/examples
79
12
6.58
d2l-ai/d2l-en
78
12
6.50
LongxingTan/Time-series-prediction
78
1
78.00
graykode/nlp-tutorial
78
9
8.67
mlflow/mlflow
78
8
9.75
facebookresearch/faiss
78
7
11.14
google/jax
77
5
15.40
terryum/awesome-deep-learning-papers
77
7
11.00
jaungiers/LSTM-Neural-Network-for-Time-Series-Prediction
77
5
15.40
labmlai/annotated_deep_learning_paper_implementations
77
7
11.00
microsoft/nni
76
10
7.60
openai/gym
76
12
6.33
hwchase17/langchain
75
5
15.00
statsmodels/statsmodels
73
10
7.30
awesomedata/awesome-public-datasets
73
3
24.33
microsoft/qlib
73
9
8.11
stefan-jansen/machine-learning-for-trading
72
16
4.50
facebookresearch/Kats
71
3
23.67
tiangolo/fastapi
71
2
35.50
eriklindernoren/ML-From-Scratch
71
19
3.74
fastai/fastbook
71
14
5.07
thunlp/GNNPapers
71
8
8.88
thuml/Time-Series-Library
70
7
10.00
zalandoresearch/pytorch-ts
70
9
7.78
ShangtongZhang/reinforcement-learning-an-introduction
70
14
5.00
Arturus/kaggle-web-traffic
70
10
7.00
rwightman/pytorch-image-models
70
5
14.00
fighting41love/funNLP
69
8
8.62
lutzroeder/netron
69
0
dair-ai/Prompt-Engineering-Guide
69
7
9.86
marcotcr/lime
69
9
7.67
MaxBenChrist/awesome_time_series_in_python
68
11
6.18
openai/openai-cookbook
68
6
11.33
pycaret/pycaret
67
8
8.38
kamranahmedse/developer-roadmap
67
8
8.38
d2l-ai/d2l-zh
67
10
6.70
facebookresearch/detectron2
67
7
9.57
jackfrued/Python-100-Days
67
10
6.70
EthicalML/awesome-production-machine-learning
67
1
67.00
yzhao062/pyod
67
6
11.17
f/awesome-chatgpt-prompts
66
2
33.00
automl/auto-sklearn
66
10
6.60
allenai/allennlp
65
2
32.50
hyperopt/hyperopt
65
5
13.00
HarisIqbal88/PlotNeuralNet
65
1
65.00
NVIDIA/DeepLearningExamples
65
6
10.83
Avik-Jain/100-Days-Of-ML-Code
64
13
4.92
floodsung/Deep-Learning-Papers-Reading-Roadmap
64
8
8.00
Show More